量子是物理世界最小的

來源:文萃谷 3.16W

科學是大眾的,每個人都應當分享它所獲得的對自然的深刻理解,並分享由此給我們心靈所帶來的理性快樂。認識科學瞭解科學不如就讓跟隨小編一起走進科學感受物理世界中最小單位的量子。

量子是物理世界最小的

  量子定義

量子(quantum)是現代物理的重要概念。最早是M普朗克在1900年提出的。他假設黑體輻射中的輻射能量是不連續的,只能取能量基本單位的整數倍。後來的研究表明,不但能量表現出這種不連續的分離化性質,其他物理量諸如角動量、自旋、電荷等也都表現出這種不連續的量子化現象。這同以牛頓力學為代表的經典物理有根本的區別。量子化現象主要表現在微觀物理世界。描寫微觀物理世界的物理理論是量子力學。量子一詞來自拉丁語quantum,意為“有多少”,代表“相當數量的某物質”。在物理學中常用到量子的概念,指一個不可分割的基本個體。例如,“光的量子”是光的單位。而延伸出的量子力學、量子光學等更成為不同的專業研究領域。其基本概念為所有的有形物質是“可量子化的”。“量子化”指其物理量的數值是特定的,而不是任意值。例如,在(休息狀態的)原子中,電子的能量是可量子化的。這決定原子的穩定和一般問題。在20世紀的前半期,出現了新的概念。許多物理學家將量子力學視為了解和描述自然的的基本理論。在量子出現在世界上100多年間,經過普朗克,愛因斯坦,斯蒂芬霍金等科學家的不懈努力,已初步建立量子力學理論。

  量子理論建立

量子物理是根據量子化的物理分支,在1900年以理論來建立。由於馬克斯·普朗克(M. Planck)解釋所謂的黑體輻射,他的工作根本上合併了量子化,到了今天它仍被使用。但他嚴重地衝擊了古典物理學,也就是在量子論未確立之前,需要了另外30年的研究。直到現在一些主張仍然不能被充分地瞭解,不光是普朗克對這個新概念感到困擾,當時德國物理學者中,黑體研究成為焦點。在10月、11月和12月會議前夕,對他的科學同事報告公開他的新想法。就這樣謹慎的實驗學家(包括F. Paschen,O.R. Lummer,E. Pringsheim,H.L. Rubens,和F. Kurlbaum)和一位理論家迎接最巨大的科學革命。

  原子物理與量子物理的區別

1.原子物理學是研究原子的結構、運動規律及相互作用的物理學分支。它主要研究:原子的電子結構;原子光譜;原子之間或與其他物質的碰撞過程和相互作用。

2.量子是現代物理的重要概念。最早是M·普朗克在1900年提出的。他假設黑體輻射中的輻射能量是不連續的,只能取能量基本單位的整數倍。後來的研究表明,不但能量表現出這種不連續的分離化性質,其他物理量諸如角動量、自旋、電荷等也都表現出這種不連續的量子化現象。這同以牛頓力學為代表的經典物理有根本的區別。量子化現象主要表現在微觀物理世界。描寫微觀物理世界的物理理論是量子力學。

  量子運用舉例

1.量子干涉“搞定”能量回收

無論怎樣心懷尊敬,對於我們來説,都不太容易能把量子力學代表的理論和它帶來的成果聯繫在一起,因為他們聽起來就是完全不相干的兩件事。而“能量回收”就是個例子。

每次駕車出行,人們都會不可避免地做一件負面的事情——浪費能量。因為在發動機點燃燃料以產生推動車身前進的驅動力同時,相當一部分能量以熱量的形式散失,或者直白地説,浪費在空氣當中。對於這種情況,美國亞利桑那大學的研究人員試圖藉助量子力學中的量子干涉原理來解決這一問題。

量子干涉描述了同一個量子系統若干個不同態疊加成一個純態的情況,這聽起來讓人完全不知所謂,但研究人員利用它研製了一種分子温差電材料,能夠有效地將熱量轉化為電能。更重要的是,這種材料的厚度僅僅只有百萬分之一英尺,在其發揮功效時,不需要再額外安裝其他外部運動部件,也不會產生任何污染。研究團隊表示,如果用這種材料將汽車的排氣系統包裹起來的話,車輛因此將獲得足以點亮200只100瓦燈泡的電能——盡管理論讓人茫然,但這數字可是清晰可見的。

該團隊因此對新型材料的前途充滿信心,確定在其他存在熱量損失的領域,該材料同樣能夠發揮作用,將熱能轉變為電能,比如光伏太陽能板。而我們只需知道,這都是量子干涉“搞定”的。

2.不確定的量子,極其確定的時鐘

作為普通人,一般是不會介意自己的手錶快了半分鐘,還是慢了十幾秒。但是,如果是像美國海軍氣象天文台那樣為一個國家的時間負責,那麼這半分半秒的`誤差都是不被允許的。好在這些重要的組織單位都能夠依靠原子鐘來保持時間的精準無誤。這些原子鐘比之前所有存在過的鐘表都要精確。其中最強悍的是一台銫原子鐘,能夠在2000萬年之後,依然保持誤差不超過1秒。

看到這種精確的能讓人紊亂的鐘表後,你也許會疑惑難道真的有什麼人或者什麼場合會用到它們?答案是肯定的,確實有人需要。比如航天工程師在計算宇宙飛船的飛行軌跡時,必須清楚地瞭解目的地的位置。不管是恆星還是小行星,它們都時刻處在運動當中。同時距離也是必須考慮的因素。一旦將來我們飛出了所在星系的範圍,留給誤差的邊際範圍將會越來越小。

那麼,量子力學又與這些有什麼關係呢?對於這些極度精準的原子鐘來説,導致誤差產生的最大敵人,是量子噪聲。它們能夠消減原子鐘測量原子振動的能力。現在,來自德國大學的兩位研究人員已經開發出,通過調整銫原子的能量層級來抑制量子噪聲程度的方法。它們目前正在試圖將這一方法應用到所有原子鐘上去。畢竟科技越發達,對準時的要求就越高。

熱門標籤