高三物理知識點總結匯總

來源:文萃谷 2.19W

在平時的學習中,説起知識點,應該沒有人不熟悉吧?知識點也可以通俗的理解為重要的內容。掌握知識點是我們提高成績的關鍵!下面是小編精心整理的高三物理知識點總結,僅供參考,歡迎大家閲讀

高三物理知識點總結匯總

高三物理知識點總結 篇1

1.分子動理論

(1)物質是由大量分子組成的分子直徑的數量級一般是10-10m。

(2)分子永不停息地做無規則熱運動。

①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去。温度越高,擴散越快。②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映。顆粒越小,布朗運動越明顯;温度越高,布朗運動越明顯。

(3)分子間存在着相互作用力

分子間同時存在着引力和斥力,引力和斥力都隨分子間距離增大而減小,但斥力的變化比引力的變化快,實際表現出來的是引力和斥力的合力。

2.物體的內能

(1)分子動能:做熱運動的分子具有動能,在熱現象的研究中,單個分子的動能是無研究意義的,重要的是分子熱運動的平均動能。温度是物體分子熱運動的平均動能的標誌。

(2)分子勢能:分子間具有由它們的相對位置決定的勢能,叫做分子勢能。分子勢能隨着物體的體積變化而變化。分子間的作用表現為引力時,分子勢能隨着分子間的距離增大而增大。分子間的作用表現為斥力時,分子勢能隨着分子間距離增大而減小。對實際氣體來説,體積增大,分子勢能增加;體積縮小,分子勢能減小。

(3)物體的內能:物體裏所有的分子的動能和勢能的總和叫做物體的內能。任何物體都有內能,物體的內能跟物體的温度和體積有關。

(4)物體的內能和機械能有着本質的區別。物體具有內能的同時可以具有機械能,也可以不具有機械能。

3.改變內能的兩種方式

(1)做功:其本質是其他形式的能和內能之間的相互轉化。

(2)熱傳遞:其本質是物體間內能的轉移。

(3)做功和熱傳遞在改變物體的內能上是等效的,但有本質的區別。

4.能量轉化和守恆定律

5.熱力學第一定律

(1)內容:物體內能的增量(ΔU)等於外界對物體做的功(W)和物體吸收的熱量(Q)的總和。

(2)表達式:W+Q=ΔU。

(3)符號法則:外界對物體做功,W取正值,物體對外界做功,W取負值;物體吸收熱量,Q取正值,物體放出熱量,Q取負值;物體內能增加,ΔU取正值,物體內能減少,ΔU取負值。

6.熱力學第二定律

(1)熱傳導的方向性:

熱傳遞的過程是有方向性的,熱量會自發地從高温物體傳給低温物體,而不會自發地從低温物體傳給高温物體。

(2)熱力學第二定律的兩種常見表述:

①不可能使熱量由低温物體傳遞到高温物體,而不引起其他變化。

②不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其他變化。

(3)永動機不可能製成:

①第一類永動機不可能製成:不消耗任何能量,卻可以源源不斷地對外做功,這種機器被稱為第一類永動機,這種永動機是不可能製造成的,它違背了能量守恆定律。

②第二類永動機不可能製成:沒有冷凝器,只有單一熱源,並從這個單一熱源吸收的熱量,可以全部用來做功,而不引起其他變化的熱機叫做第二類永動機。第二類永動機不可能製成,它雖然不違背能量守恆定律,但違背了熱力學第二定律。

7.氣體的狀態參量

(1)温度:宏觀上表示物體的冷熱程度,微觀上是分子平均動能的標誌。兩種温標的換算關係:T=(t+273)K。

絕對零度為-273.15℃,它是低温的極限,只能接近不能達到。

(2)氣體的體積:氣體的體積不是氣體分子自身體積的總和,而是指大量氣體分子所能達到的整個空間的體積。封閉在容器內的氣體,其體積等於容器的容積。

(3)氣體的壓強:氣體作用在器壁單位面積上的壓力。數值上等於單位時間內器壁單位面積上受到氣體分子的總衝量。

①產生原因:大量氣體分子無規則運動碰撞器壁,形成對器壁各處均勻的持續的壓力。

②決定因素:一定氣體的壓強大小,微觀上決定於分子的運動速率和分子密度;宏觀上決定於氣體的温度和體積。

(4)對於一定質量的理想氣體,PV/T=恆量。

8.氣體分子運動的特點

(1)氣體分子間有很大的空隙。氣體分子之間的距離大約是分子直徑的10倍。

(2)氣體分子之間的作用力十分微弱。在處理某些問題時,可以把氣體分子看作沒有相互作用的質點。

(3)氣體分子運動的速率很大,常温下大多數氣體分子的速率都達到數百米每秒。離這個數值越遠,分子數越少,表現出“中間多,兩頭少”的統計分佈規律。

高三物理知識點總結 篇2

機械振動在介質中的傳播稱為機械波(mechanical wave)。機械波與電磁波既有相似之處又有不同之處,機械波由機械振動產生,電磁波由電磁振盪產生;機械波的傳播需要特定的介質,在不同介質中的傳播速度也不同,在真空中根本不能傳播,而電磁波(例如光波)可以在真空中傳播;機械波可以是橫波和縱波,但電磁波只能是橫波;機械波與電磁波的許多物理性質,如:折射、反射等是一致的,描述它們的物理量也是相同的。常見的機械波有:水波、聲波、地震波。

機械振動產生機械波,機械波的傳遞一定要有介質,有機械振動但不一定有機械波產生。

形成條件

波源

波源也稱振源,指能夠維持振動的傳播,不間斷的輸入能量,並能發出波的物體或物體所在的初始位置。波源即是機械波形成的必要條件,也是電磁波形成的必要條件。

波源可以認為是第一個開始振動的質點,波源開始振動後,介質中的其他質點就以波源的頻率做受迫振動,波源的頻率等於波的頻率。

介質

廣義的介質可以是包含一種物質的另一種物質。在機械波中,介質特指機械波藉以傳播的物質。僅有波源而沒有介質時,機械波不會產生,例如,真空中的鬧鐘無法發出聲音。機械波在介質中的傳播速率是由介質本身的固有性質決定的。在不同介質中,波速是不同的。

傳播方式與特點

機械波在傳播過程中,每一個質點都只做上下(左右)的簡諧振動,即,質點本身並不隨着機械波的傳播而前進,也就是説,機械波的一質點運動是沿一水平直線進行的。例如:人的聲帶不會隨着聲波的傳播而離開口腔。簡諧振動做等幅震動,理想狀態下可看作做能量守恆的運動.阻尼振動為能量逐漸損失的運動。

為了説明機械波在傳播時質點運動的特點,現已繩波(右下圖)為例進行介紹,其他形式的機械波同理[1]。

繩波是一種簡單的橫波,在日常生活中,我們拿起一根繩子的一端進行一次抖動,就可以看見一個波形在繩子上傳播,如果連續不斷地進行週期性上下抖動,就形成了繩波[1]。

把繩分成許多小部分,每一小部分都看成一個質點,相鄰兩個質點間,有彈力的相互作用。第一個質點在外力作用下振動後,就會帶動第二個質點振動,只是質點二的振動比前者落後。這樣,前一個質點的振動帶動後一個質點的振動,依次帶動下去,振動也就發生區域向遠處的傳播,從而形成了繩波。如果在繩子上任取一點繫上紅布條,我們還可以發現,紅布條只是在上下振動,並沒有隨波前進[1]。

由此,我們可以發現,介質中的每個質點,在波傳播時,都只做簡諧振動(可以是上下,也可以是左右),機械波可以看成是一種運動形式的傳播,質點本身不會沿着波的傳播方向移動。

對質點運動方向的判定有很多方法,比如對比前一個質點的運動;還可以用"上坡下,下坡上"進行判定,即沿着波的傳播方向,向上遠離平衡位置的質點向下運動,向下遠離平衡位置的質點向上運動。

機械波傳播的本質

在機械波傳播的過程中,介質裏本來相對靜止的質點,隨着機械波的傳播而發生振動,這表明這些質點獲得了能量,這個能量是從波源通過前面的質點依次傳來的。所以,機械波傳播的實質是能量的傳播,這種能量可以很小,也可以很大,海洋的潮汐能甚至可以用來發電,這是維持機械波(水波)傳播的能量轉化成了電能。

機械波

機械振動在介質中的傳播稱為機械波。機械波與電磁波既有相似之處又有不同之處,機械波由機械振動產生,電磁波由電磁振盪產生;機械波的傳播需要特定的介質,在不同介質中的傳播速度也不同,在真空中根本不能傳播,而電磁波,例如光波,可以在真空中傳播;機械波可以是橫波和縱波,但電磁波只能是橫波;機械波與電磁波的.許多物理性質,如:折射、反射等是一致的,描述它們的物理量也是相同的。常見的機械波有:水波、聲波、地震波。

高三物理知識點總結 篇3

1.力是物體對物體的作用,是物體發生形變和改變物體的運動狀態(即產生加速度)的原因。力是矢量。

2.重力:

(1)重力是由於地球對物體的吸引而產生的。

[注意]重力是由於地球的吸引而產生,但不能説重力就是地球的吸引力,重力是萬有引力的一個分力。

但在地球表面附近,可以認為重力近似等於萬有引力。

(2)重力的大小:地球表面G=mg,離地面高h處G/=mg/,其中g/=[R/(R+h)]2g

(3)重力的方向:豎直向下(不一定指向地心)。

(4)重心:物體的各部分所受重力合力的作用點,物體的重心不一定在物體上。

3.彈力:

(1)產生原因:由於發生彈性形變的物體有恢復形變的趨勢而產生的。

(2)產生條件:

①直接接觸;

②有彈性形變。

(3)彈力的方向:與物體形變的方向相反,彈力的受力物體是引起形變的物體,施力物體是發生形變的物體。在點面接觸的情況下,垂直於面;在兩個曲面接觸(相當於點接觸)的情況下,垂直於過接觸點的公切面。

①繩的拉力方向總是沿着繩且指向繩收縮的方向,且一根輕繩上的張力大小處處相等。

②輕杆既可產生壓力,又可產生拉力,且方向不一定沿杆。

(4)彈力的大小:一般情況下應根據物體的運動狀態,利用平衡條件或牛頓定律來求解。彈簧彈力可由胡克定律來求解。

4.摩擦力

(1)產生的條件:

①相互接觸的物體間存在壓力;

②接觸面不光滑;

③接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺一不可。

(2)摩擦力的方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反。

(3)判斷靜摩擦力方向的方法:

①假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則説明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則説明它們原來有相對運動趨勢,並且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同。然後根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向。

②平衡法:根據二力平衡條件可以判斷靜摩擦力的方向。

(4)大小:先判明是何種摩擦力,然後再根據各自的規律去分析求解。

①滑動摩擦力大小:利用公式f=μFN進行計算,其中FN是物體的正壓力,不一定等於物體的重力,甚至可能和重力無關。或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解。

②靜摩擦力大小:靜摩擦力大小可在0與fmax之間變化,一般應根據物體的運動狀態由平衡條件或牛頓定律來求解。

5.物體的受力分析:

(1)確定所研究的物體,分析周圍物體對它產生的作用,不要分析該物體施於其他物體上的力,也不要把作用在其他物體上的力錯誤地認為通過“力的傳遞”作用在研究對象上。

(2)按“性質力”的順序分析。即按重力、彈力、摩擦力、其他力順序分析,不要把“效果力”與“性質力”混淆重複分析。

(3)如果有一個力的方向難以確定,可用假設法分析。先假設此力不存在,想像所研究的物體會發生怎樣的運動,然後審查這個力應在什麼方向,對象才能滿足給定的運動狀態。

6.力的合成與分解:

(1)合力與分力:如果一個力作用在物體上,它產生的效果跟幾個力共同作用產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力就叫做這個力的分力。

(2)力合成與分解的根本方法:平行四邊形定則。

(3)力的合成:求幾個已知力的合力,叫做力的合成。

共點的兩個力(F1和F2)合力大小F的取值範圍為:|F1-F2|≤F≤F1+F2。

(4)力的分解:求一個已知力的分力,叫做力的分解(力的分解與力的合成互為逆運算)。

在實際問題中,通常將已知力按力產生的實際作用效果分解;為方便某些問題的研究,在很多問題中都採用正交分解法。

7.共點力的平衡:

(1)共點力:作用在物體的同一點,或作用線相交於一點的幾個力。

(2)平衡狀態:物體保持勻速直線運動或靜止叫平衡狀態,是加速度等於零的狀態。

(3)共點力作用下的物體的平衡條件:物體所受的合外力為零,即∑F=0,若採用正交分解法求解平衡問題,則平衡條件應為:∑Fx=0,∑Fy=0。

(4)解決平衡問題的常用方法:隔離法、整體法、圖解法、三角形相似法、正交分解法等等。

高三物理知識點總結 篇4

1.交變電流:大小和方向都隨時間作週期性變化的電流,叫做交變電流。按正弦規律變化的電動勢、電流稱為正弦交流電。

2.正弦交流電:

(1)函數式:e=Emsinωt(其中Em=NBSω)

(2)線圈平面與中性面重合時,磁通量,電動勢為零,磁通量的變化率為零,線圈平面與中心面垂直時,磁通量為零,電動勢,磁通量的變化率。

(3)若從線圈平面和磁場方向平行時開始計時,交變電流的變化規律為i=Imcosωt。

(4)圖像:正弦交流電的電動勢e、電流i、和電壓u,其變化規律可用函數圖像描述。

3.表徵交變電流的物理量:

(1)瞬時值:交流電某一時刻的值,常用e、u、i表示。

(2)值:Em=NBSω,值Em(Um,Im)與線圈的形狀,以及轉動軸處於線圈平面內哪個位置無關。在考慮電容器的耐壓值時,則應根據交流電的值。

(3)有效值:交流電的有效值是根據電流的熱效應來規定的。即在同一時間內,跟某一交流電能使同一電阻產生相等熱量的直流電的數值,叫做該交流電的有效值。

①求電功、電功率以及確定保險絲的熔斷電流等物理量時,要用有效值計算,有效值與值之間的關係E=Em/,U=Um/,I=Im/只適用於正弦交流電,其他交變電流的有效值只能根據有效值的定義來計算,切不可亂套公式。

②在正弦交流電中,各種交流電器設備上標示值及交流電錶上的測量值都指有效值。

(4)週期和頻率----週期T:交流電完成一次週期性變化所需的時間。在一個週期內,交流電的方向變化兩次。

頻率f:交流電在1s內完成周期性變化的次數。角頻率:ω=2π/T=2πf。

4.電感、電容對交變電流的影響:

(1)電感:通直流、阻交流;通低頻、阻高頻。

(2)電容:通交流、隔直流;通高頻、阻低頻。

5.變壓器:

(1)理想變壓器:工作時無功率損失(即無銅損、鐵損),因此,理想變壓器原副線圈電阻均不計。

(2)★理想變壓器的關係式:

①電壓關係:U1/U2=n1/n2(變壓比),即電壓與匝數成正比。

②功率關係:P入=P出,即I1U1=I2U2+I3U3+…

③電流關係:I1/I2=n2/n1(變流比),即對只有一個副線圈的變壓器電流跟匝數成反比。

(3)變壓器的高壓線圈匝數多而通過的電流小,可用較細的導線繞制,低壓線圈匝數少而通過的電流大,應當用較粗的導線繞制。

6.電能的輸送:

(1)關鍵:

減少輸電線上電能的損失:P耗=I2R線

(2)方法:

①減小輸電導線的電阻,如採用電阻率小的材料;加大導線的橫截面積。

②提高輸電電壓,減小輸電電流。前一方法的作用十分有限,代價較高,一般採用後一種方法。

(3)遠距離輸電過程:

輸電導線損耗的電功率:P損=(P/U)2R線,因此,當輸送的電能一定時,輸電電壓增大到原來的n倍,輸電導線上損耗的功率就減少到原來的1/n2。

(4)解有關遠距離輸電問題時,公式P損=U線I線或P損=U線2R線不常用,其原因是在一般情況下,U線不易求出,且易把U線和U總相混淆而造成錯誤。

高三物理知識點總結 篇5

1.電流:

(1)定義:電荷的定向移動形成電流。

(2)電流的方向:規定正電荷定向移動的方向為電流的方向。

在外電路中電流由高電勢點流向低電勢點,在電源的內部電流由低電勢點流向高電勢點(由負極流向正極)。

2.電流強度:

(1)定義:通過導體橫截面的電量跟通過這些電量所用時間的比值,I=q/t

(2)在國際單位制中電流的單位是安。1mA=10-3A,1μA=10-6A

(3)電流強度的定義式中,如果是正、負離子同時定向移動,q應為正負離子的電荷量和。

3.電阻

(1)定義:導體兩端的電壓與通過導體中的電流的比值叫導體的電阻。

(2)定義式:R=U/I,單位:Ω

(3)電阻是導體本身的屬性,跟導體兩端的電壓及通過電流無關。

4.電阻定律

(1)內容:在温度不變時,導體的電阻R與它的長度L成正比,與它的橫截面積S成反比。

(2)公式:R=ρL/S。

(3)適用條件:

①粗細均勻的導線;

②濃度均勻的電解液。

5.電阻率:

反映了材料對電流的阻礙作用。

(1)有些材料的電阻率隨温度升高而增大(如金屬);有些材料的電阻率隨温度升高而減小(如半導體和絕緣體);有些材料的電阻率幾乎不受温度影響(如錳銅和康銅)。

(2)半導體:導電性能介於導體和絕緣體之間,而且電阻隨温度的增加而減小,這種材料稱為半導體,半導體有熱敏特性,光敏特性,摻入微量雜質特性。

(3)超導現象:當温度降低到絕對零度附近時,某些材料的電阻率突然減小到零,這種現象叫超導現象,處於這種狀態的物體叫超導體。

6.電功和電熱

(1)電功和電功率:

電流做功的實質是電場力對電荷做功。電場力對電荷做功,電荷的電勢能減少,電勢能轉化為其他形式的能。因此電功W=qU=UIt,這是計算電功普遍適用的公式。

單位時間內電流做的功叫電功率,P=W/t=UI,這是計算電功率普遍適用的公式。

(2)★焦耳定律:Q=I2Rt,式中Q表示電流通過導體產生的熱量,單位是J。焦耳定律無論是對純電阻電路還是對非純電阻電路都是適用的。

(3)電功和電熱的關係

①純電阻電路消耗的電能全部轉化為熱能,電功和電熱是相等的。所以有W=Q,UIt=I2Rt,U=IR(歐姆定律成立),

②非純電阻電路消耗的電能一部分轉化為熱能,另一部分轉化為其他形式的能。所以有W>Q,UIt>I2Rt,U>IR(歐姆定律不成立)。

高三物理知識點總結 篇6

1.電路的組成:電源、開關、用電器、導線。

2.電路的三種狀態:通路、斷路、短路。

3.電流有分支的是並聯,電流只有一條通路的是串聯。

4.在家庭電路中,用電器都是並聯的。

5.電荷的定向移動形成電流(金屬導體裏自由電子定向移動的方向與電流方向相反)。

6.電流表不能直接與電源相連,電壓表在不超出其測量範圍的情況下可以。

7.電壓是形成電流的原因。

8.安全電壓應低於24V。

9.金屬導體的電阻隨温度的升高而增大。

10.影響電阻大小的因素有:材料、長度、橫截面積、温度(温度有時不考慮)。

11.滑動變阻器和電阻箱都是靠改變接入電路中電阻絲的長度來改變電阻的。

12.利用歐姆定律公式要注意I、U、R三個量是對同一段導體而言的。

13.伏安法測電阻原理:R=伏安法測電功率原理:P=UI。

14.串聯電路中:電壓、電功和電功率與電阻成正比。

15.並聯電路中:電流、電功和電功率與電阻成反比。

16."220V、100W"的燈泡比"220V、40W"的燈泡電阻小,燈絲粗。

高三物理知識點總結 篇7

1、簡諧振動F=—kx{F:回覆力,k:比例係數,x:位移,負號表示F的方向與x始終反向}。

2、單擺週期T=2π(l/g)1/2{l:擺長(m),g:當地重力加速度值,成立條件:擺角θ<100;l>>r}。

3、受迫振動頻率特點:f=f驅動力4。發生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕。

5、機械波、橫波、縱波〔見第二冊P2〕

6、波速v=s/t=λf=λ/T{波傳播過程中,一個週期向前傳播一個波長;波速大小由介質本身所決定}。

7、聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)。

8、波發生明顯衍射(波繞過障礙物或孔繼續傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大。

9、波的干涉條件:兩列波頻率相同(相差恆定、振幅相近、振動方向相同)。

10、多普勒效應:由於波源與觀測者間的相互運動,導致波源發射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小。

高三物理知識點總結 篇8

1、熱現象:與温度有關的現象叫做熱現象。

2、温度:物體的冷熱程度。

3、温度計:要準確地判斷或測量温度就要使用的專用測量工具。

4、温標:要測量物體的温度,首先需要確立一個標準,這個標準叫做温標。

(1)攝氏温標:單位:攝氏度,符號℃,攝氏温標規定,在標準大氣壓下,冰水混合物的温度為0℃;沸水的温度為100℃。中間100等分,每一等分表示1℃。

(a)如攝氏温度用t表示:t=25℃

(b)攝氏度的符號為℃,如34℃

(c)讀法:37℃,讀作37攝氏度;–4.7℃讀作:負4.7攝氏度或零下4.7攝氏度。

(2)熱力學温標:在國際單位之中,採用熱力學温標(又稱開氏温標)。單位:開爾文,符號:K。在標準大氣壓下,冰水混合物的温度為273K。

熱力學温度T與攝氏温度t的換算關係:T=(t+273)K。0K是自然界的低温極限,只能無限接近永遠達不到。

(3)華氏温標:在標準大氣壓下,冰的熔點為32℉,水的沸點為212℉,中間180等分,每一等分表示1℉。華氏温度F與攝氏温度t的換算關係:F=5t+32

5、温度計

(1)常用温度計:構造:温度計由內徑細而均勻的玻璃外殼、玻璃泡、液麪、刻度等幾部分組成。原理:液體温度計是根據液體熱脹冷縮的性質製成的。常用温度計內的液體有水銀、酒精、煤油等。

6、正確使用温度計

(1)先觀察它的測量範圍、最小刻度、零刻度的位置。實驗温度計的範圍為-20℃-110℃,最小刻度為1℃。體温温度計的範圍為35℃-42℃,最小刻度為0.1℃。

(2)估計待測物的温度,選用合適的温度計。

(3)温度及的玻璃泡要與待測物充分接觸(但不能接觸容器底與容器側面)。

(4)待液麪穩定後,才能讀數。(讀數時温度及不能離開待測物)。

熱門標籤