感測器的特點有哪些特徵

來源:文萃谷 2.35W

感測器是能感受規定的被測量件並按照一定的規律轉換成可用訊號的器件或裝置,通常由敏感元件和轉換元件組成。下面是本站小編給大家整理的感測器特點,希望能幫到大家!

感測器的特點有哪些特徵
  感測器的特點

感測器的特點包括:微型化、數字化、智慧化、多功能化、系統化、網路化,它不僅促進了傳統產業的改造和更新換代,而且還可能建立新型工業,從而成為21世紀新的經濟增長點。微型化是建立在微電子機械系統(MEMS)技術基礎上的,已成功應用在矽器件上做成矽壓力感測器。

  感測器的主要分類

按用途

壓力敏和力敏感測器、位置感測器、液位感測器、能耗感測器、速度感測器、加速度感測器、射線輻射感測器、熱敏感測器。

按原理

振動感測器、溼敏感測器、磁敏感測器、氣敏感測器、真空度感測器、生物感測器等。

按輸出訊號

模擬感測器:將被測量的非電學量轉換成模擬電訊號。

數字感測器:將被測量的非電學量轉換成數字輸出訊號(包括直接和間接轉換)。

膺數字感測器:將被測量的訊號量轉換成頻率訊號或短週期訊號的輸出(包括直接或間接轉換)。

開關感測器:當一個被測量的訊號達到某個特定的閾值時,感測器相應地輸出一個設定的低電平或高電平訊號。

按其製造工藝

整合感測器是用標準的生產矽基半導體積體電路的工藝技術製造的。

通常還將用於初步處理被測訊號的部分電路也整合在同一晶片上。

薄膜感測器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路製造在此基板上。

厚膜感測器是利用相應材料的漿料,塗覆在陶瓷基片上製成的,基片通常是Al2O3製成的,然後進行熱處理,使厚膜成形。

陶瓷感測器採用標準的陶瓷工藝或其某種變種工藝(溶膠、凝膠等)生產。

完成適當的預備性操作之後,已成形的元件在高溫中進行燒結。厚膜和陶瓷感測器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。

每種工藝技術都有自己的優點和不足。由於研究、開發和生產所需的.資本投入較低,以及感測器引數的高穩定性等原因,採用陶瓷和厚膜感測器比較合理。

按測量目

物理型感測器是利用被測量物質的某些物理性質發生明顯變化的特性製成的。

化學型感測器是利用能把化學物質的成分、濃度等化學量轉化成電學量的敏感元件製成的。

生物型感測器是利用各種生物或生物物質的特性做成的,用以檢測與識別生物體內化學成分的感測器。

按其構成

基本型感測器:是一種最基本的單個變換裝置。

組合型感測器:是由不同單個變換裝置組合而構成的感測器。

應用型感測器:是基本型感測器或組合型感測器與其他機構組合而構成的感測器。

按作用形式

按作用形式可分為主動型和被動型感測器。

主動型感測器又有作用型和反作用型,此種感測器對被測物件能發出一定探測訊號,能檢測探測訊號在被測物件中所產生的變化,或者由探測訊號在被測物件中產生某種效應而形成訊號。檢測探測訊號變化方式的稱為作用型,檢測產生響應而形成訊號方式的稱為反作用型。雷達與無線電頻率範圍探測器是作用型例項,而光聲效應分析裝置與鐳射分析器是反作用型例項。

被動型感測器只是接收被測物件本身產生的訊號,如紅外輻射溫度計、紅外攝像裝置等。

  感測器的主要特性

感測器靜態

感測器的靜態特性是指對靜態的輸入訊號,感測器的輸出量與輸入量之間所具有相互關係。因為這時輸入量和輸出量都和時間無關,所以它們之間的關係,即感測器的靜態特性可用一個不含時間變數的代數方程,或以輸入量作橫座標,把與其對應的輸出量作縱座標而畫出的特性曲線來描述。表徵感測器靜態特性的主要引數有:線性度、靈敏度、遲滯、重複性、漂移等。

線性度:指感測器輸出量與輸入量之間的實際關係曲線偏離擬合直線的程度。定義為在全量程範圍內實際特性曲線與擬合直線之間的最大偏差值與滿量程輸出值之比。

靈敏度:靈敏度是感測器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。

遲滯:感測器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對於同一大小的輸入訊號,感測器的正反行程輸出訊號大小不相等,這個差值稱為遲滯差值。

重複性:重複性是指感測器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不一致的程度。

漂移:感測器的漂移是指在輸入量不變的情況下,感測器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是感測器自身結構引數;二是周圍環境(如溫度、溼度等)。

分辨力:當感測器的輸入從非零值緩慢增加時,在超過某一增量後輸出發生可觀測的變化,這個輸入增量稱感測器的分辨力,即最小輸入增量。

閾值:當感測器的輸入從零值開始緩慢增加時,在達到某一值後輸出發生可觀測的變化,這個輸入值稱感測器的閾值電壓。

感測器動態

所謂動態特性,是指感測器在輸入變化時,它的輸出的特性。在實際工作中,感測器的動態特性常用它對某些標準輸入訊號的響應來表示。這是因為感測器對標準輸入訊號的響應容易用實驗方法求得,並且它對標準輸入訊號的響應與它對任意輸入訊號的響應之間存在一定的關係,往往知道了前者就能推定後者。最常用的標準輸入訊號有階躍訊號和正弦訊號兩種,所以感測器的動態特性也常用階躍響應和頻率響應來表示。

線性度

通常情況下,感測器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。

擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為最小的理論直線作為擬合直線,此擬合直線稱為最小二乘法擬合直線。

靈敏度

靈敏度是指感測器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。

它是輸出一輸入特性曲線的斜率。如果感測器的輸出和輸入之間顯線性關係,則靈敏度S是一個常數。否則,它將隨輸入量的變化而變化。

靈敏度的量綱是輸出、輸入量的量綱之比。例如,某位移感測器,在位移變化1mm時,輸出電壓變化為200mV,則其靈敏度應表示為200mV/mm。

當感測器的輸出、輸入量的量綱相同時,靈敏度可理解為放大倍數。

提高靈敏度,可得到較高的測量精度。但靈敏度愈高,測量範圍愈窄,穩定性也往往愈差。

解析度

解析度是指感測器可感受到的被測量的最小變化的能力。也就是說,如果輸入量從某一非零值緩慢地變化。當輸入變化值未超過某一數值時,感測器的輸出不會發生變化,即感測器對此輸入量的變化是分辨不出來的。只有當輸入量的變化超過解析度時,其輸出才會發生變化。

熱門標籤