高三物理知識點歸納合集15篇

來源:文萃谷 2.62W

上學期間,是不是經常追着老師要知識點?知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。相信很多人都在為知識點發愁,下面是小編為大家整理的高三物理知識點歸納,供大家參考借鑑,希望可以幫助到有需要的朋友。

高三物理知識點歸納合集15篇

高三物理知識點歸納1

第一、二節探究自由落體運動/自由落體運動規律

記錄自由落體運動軌跡

1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。

2.伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→通過實驗對推論進行檢驗→對假説進行修正和推廣

自由落體運動規律

1.自由落體運動是一種初速度為0的勻變速直線運動,加速度為常量,稱為重力加速度(g)。g=9.8m/s?

2.重力加速度g的方向總是豎直向下的。其大小隨着緯度的增加而增加,隨着高度的增加而減少。

?=2gs

豎直上拋運動

處理方法:分段法(上升過程a=-g,下降過程為自由落體),整體法(a=-g,注意矢量性)

1.速度公式:vt=v0—gt

位移公式:h=v0t—gt?/2

2.上升到點時間t=v0/g,上升到點所用時間與回落到拋出點所用時間相等

3.上升的高度:s=v0?/2g

第三節勻變速直線運動

勻變速直線運動規律

1.基本公式:s=v0t+at?/2

2.平均速度:vt=v0+at

3.推論:

(1)v=vt/2

(2)S2—S1=S3—S2=S4—S3=……=△S=aT?

(3)初速度為0的n個連續相等的時間內S之比:

S1:S2:S3:……:Sn=1:3:5:……:(2n—1)

(4)初速度為0的n個連續相等的位移內t之比:

t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)

(5)a=(Sm—Sn)/(m—n)T?(利用上各段位移,減少誤差→逐差法)

(6)vt?—v0?=2as

第四節汽車行駛安全

1.停車距離=反應距離(車速×反應時間)+剎車距離(勻減速)

2.安全距離≥停車距離

3.剎車距離的大小取決於車的初速度和路面的粗糙程度

4.追及/相遇問題:抓住兩物體速度相等時滿足的臨界條件,時間及位移關係,臨界狀態(勻減速至靜止)。可用圖象法解題。

高三物理知識點歸納2

力學知識點1、力:

力是物體之間的相互作用,有力必有施力物體和受力物體。力的大小、方向、作用點叫力的三要素。用一條有向線段把力的三要素表示出來的方法叫力的圖示。

按照力命名的依據不同,可以把力分為

按性質命名的力(例如:重力、彈力、摩擦力、分子力、電磁力等。)

按效果命名的力(例如:拉力、壓力、支持力、動力、阻力等)。

力的作用效果:形變;改變運動狀態.

力學知識點2、重力:

由於地球的吸引而使物體受到的力。重力的大小G=mg,方向豎直向下。作用點叫物體的重心;重心的位置與物體的質量分佈和形狀有關。質量均勻分佈,形狀規則的物體的重心在其幾何中心處。薄板類物體的重心可用懸掛法確定,

力學知識點3、彈力:

(1)內容:發生形變的物體,由於要恢復原狀,會對跟它接觸的且使其發生形變的物體產生力的作用,這種力叫彈力。

(2)條件:接觸;形變。但物體的形變不能超過彈性限度。

(3)彈力的方向和產生彈力的那個形變方向相反。(平面接觸面間產生的彈力,其方向垂直於接觸面;曲面接觸面間產生的彈力,其方向垂直於過研究點的曲面的切面;點面接觸處產生的彈力,其方向垂直於面、繩子產生的彈力的方向沿繩子所在的直線。)

(4)大小:

彈簧的彈力大小由F=kx計算,

一般情況彈力的大小與物體同時所受的其他力及物體的運動狀態有關,應結合平衡條件或牛頓定律確定.

力學知識點4、摩擦力:

(1)摩擦力產生的條件:接觸面粗糙、有彈力作用、有相對運動(或相對運動趨勢),三者缺一不可.

(2)摩擦力的方向:跟接觸面相切,與相對運動或相對運動趨勢方向相反.但注意摩擦力的方向和物體運動方向可能相同,也可能相反,還可能成任意角度.

2高中物理知識點總結:力學部分

力學的基本規律之:勻變速直線運動的基本規律(12個方程);

三力共點平衡的特點;

牛頓運動定律(牛頓第一、第二、第三定律);

力學的基本規律之:萬有引力定律;

天體運動的基本規律(行星、人造地球衞星、萬有引力完全充當向心力、近地極地同步三顆特殊衞星、變軌問題);

力學的基本規律之:動量定理與動能定理(力與物體速度變化的關係—衝量與動量變化的關係—功與能量變化的關係);

動量守恆定律(四類守恆條件、方程、應用過程);

功能基本關係(功是能量轉化的量度)

力學的基本規律之:重力做功與重力勢能變化的關係(重力、分子力、電場力、引力做功的特點);

功能原理(非重力做功與物體機械能變化之間的關係);

力學的基本規律之:機械能守恆定律(守恆條件、方程、應用步驟);

簡諧運動的基本規律(兩個理想化模型一次全振動四個過程五個物理量、簡諧運動的對稱性、單擺的振動週期公式);簡諧運動的圖像應用;

簡諧波的傳播特點;波長、波速、週期的關係;簡諧波的圖像應用。

高三物理知識點歸納3

1.分子動理論

(1)物質是由大量分子組成的分子直徑的數量級一般是10-10m。

(2)分子永不停息地做無規則熱運動。

①擴散現象:不同的物質互相接觸時,可以彼此進入對方中去。温度越高,擴散越快。②布朗運動:在顯微鏡下看到的懸浮在液體(或氣體)中微小顆粒的無規則運動,是液體分子對微小顆粒撞擊作用的不平衡造成的,是液體分子永不停息地無規則運動的宏觀反映。顆粒越小,布朗運動越明顯;温度越高,布朗運動越明顯。

(3)分子間存在着相互作用力

分子間同時存在着引力和斥力,引力和斥力都隨分子間距離增大而減小,但斥力的變化比引力的變化快,實際表現出來的是引力和斥力的合力。

2.物體的內能

(1)分子動能:做熱運動的分子具有動能,在熱現象的研究中,單個分子的動能是無研究意義的,重要的是分子熱運動的平均動能。温度是物體分子熱運動的平均動能的標誌。

(2)分子勢能:分子間具有由它們的相對位置決定的勢能,叫做分子勢能。分子勢能隨着物體的體積變化而變化。分子間的作用表現為引力時,分子勢能隨着分子間的距離增大而增大。分子間的作用表現為斥力時,分子勢能隨着分子間距離增大而減小。對實際氣體來説,體積增大,分子勢能增加;體積縮小,分子勢能減小。

(3)物體的內能:物體裏所有的分子的動能和勢能的總和叫做物體的內能。任何物體都有內能,物體的內能跟物體的温度和體積有關。

(4)物體的內能和機械能有着本質的區別。物體具有內能的同時可以具有機械能,也可以不具有機械能。

3.改變內能的兩種方式

(1)做功:其本質是其他形式的能和內能之間的相互轉化。(2)熱傳遞:其本質是物體間內能的轉移。

(3)做功和熱傳遞在改變物體的內能上是等效的,但有本質的區別。

4.★能量轉化和守恆定律

5★.熱力學第一定律

(1)內容:物體內能的增量(ΔU)等於外界對物體做的功(W)和物體吸收的熱量(Q)的總和。

(2)表達式:W+Q=ΔU

(3)符號法則:外界對物體做功,W取正值,物體對外界做功,W取負值;物體吸收熱量,Q取正值,物體放出熱量,Q取負值;物體內能增加,ΔU取正值,物體內能減少,ΔU取負值。

6.熱力學第二定律

(1)熱傳導的方向性

熱傳遞的過程是有方向性的,熱量會自發地從高温物體傳給低温物體,而不會自發地從低温物體傳給高温物體。

(2)熱力學第二定律的兩種常見表述

①不可能使熱量由低温物體傳遞到高温物體,而不引起其他變化。

②不可能從單一熱源吸收熱量並把它全部用來做功,而不引起其他變化。

(3)永動機不可能製成

①第一類永動機不可能製成:不消耗任何能量,卻可以源源不斷地對外做功,這種機器被稱為第一類永動機,這種永動機是不可能製造成的,它違背了能量守恆定律。

②第二類永動機不可能製成:沒有冷凝器,只有單一熱源,並從這個單一熱源吸收的熱量,可以全部用來做功,而不引起其他變化的熱機叫做第二類永動機。第二類永動機不可能製成,它雖然不違背能量守恆定律,但違背了熱力學第二定律。

7.氣體的狀態參量

(1)温度:宏觀上表示物體的冷熱程度,微觀上是分子平均動能的標誌。兩種温標的換算關係:T=(t+273)K。

絕對零度為-273.15℃,它是低温的極限,只能接近不能達到。

(2)氣體的體積:氣體的體積不是氣體分子自身體積的總和,而是指大量氣體分子所能達到的整個空間的體積。封閉在容器內的氣體,其體積等於容器的容積。

(3)氣體的壓強:氣體作用在器壁單位面積上的壓力。數值上等於單位時間內器壁單位面積上受到氣體分子的總衝量。

①產生原因:大量氣體分子無規則運動碰撞器壁,形成對器壁各處均勻的持續的壓力。

②決定因素:一定氣體的壓強大小,微觀上決定於分子的運動速率和分子密度;宏觀上決定於氣體的温度和體積。

(4)對於一定質量的理想氣體,PV/T=恆量

8.氣體分子運動的.特點

(1)氣體分子間有很大的空隙。氣體分子之間的距離大約是分子直徑的10倍。

(2)氣體分子之間的作用力十分微弱。在處理某些問題時,可以把氣體分子看作沒有相互作用的質點。

(3)氣體分子運動的速率很大,常温下大多數氣體分子的速率都達到數百米每秒。離這個數值越遠,分子數越少,表現出“中間多,兩頭少”的統計分佈規律。

高三物理知識點歸納4

1621年,荷蘭數學家斯涅耳找到了入射角與折射角之間的規律——折射定律。

1801年,英國物理學家托馬斯·楊成功地觀察到了光的干涉現象。

1818年,法國科學家菲涅爾和泊松計算並實驗觀察到光的圓板衍射—泊松亮斑。

1864年,英國物理學家麥克斯韋預言了電磁波的存在,指出光是一種電磁波;1887年,赫茲證實了電磁波的存在,光是一種電磁波

1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。

愛因斯坦還提出了相對論中的一個重要結論——質能方程式。

公元前468-前376,我國的墨翟及其弟子在《墨經》中記載了光的直線傳播、影的形成、光的反射、平面鏡和球面鏡成像等現象,為世界上最早的光學著作。

1849年法國物理學家斐索首先在地面上測出了光速,以後又有許多科學家採用了更精密的方法測定光速,如美國物理學家邁克爾遜的旋轉稜鏡法。(注意其測量方法)

關於光的本質:17世紀明確地形成了兩種學説:一種是牛頓主張的微粒説,認為光是光源發出的一種物質微粒;另一種是荷蘭物理學家惠更斯提出的波動説,認為光是在空間傳播的某種波。這兩種學説都不能解釋當時觀察到的全部光現象。

物理學晴朗天空上的兩朵烏雲:①邁克遜-莫雷實驗——相對論(高速運動世界),②熱輻射實驗——量子論(微觀世界);

19世紀和20世紀之交,物理學的三大發現:X射線的發現,電子的發現,放射性的發現。

1905年,愛因斯坦提出了狹義相對論,有兩條基本原理:①相對性原理——不同的慣性參考系中,一切物理規律都是相同的;②光速不變原理——不同的慣性參考系中,光在真空中的速度一定是c不變。

1900年,德國物理學家普朗克解釋物體熱輻射規律提出能量子假説:物質發射或吸收能量時,能量不是連續的,而是一份一份的,每一份就是一個最小的能量單位,即能量子;

激光——被譽為20世紀的“世紀之光”;

1900年,德國物理學家普朗克為解釋物體熱輻射規律提出:電磁波的發射和吸收不是連續的,而是一份一份的,把物理學帶進了量子世界;受其啟發1905年愛因斯坦提出光子説,成功地解釋了光電效應規律,因此獲得諾貝爾物理獎。

1922年,美國物理學家康普頓在研究石墨中的電子對X射線的散射時——康普頓效應,證實了光的粒子性。(説明動量守恆定律和能量守恆定律同時適用於微觀粒子)

1913年,丹麥物理學家玻爾提出了自己的原子結構假説,成功地解釋和預言了氫原子的輻射電磁波譜,為量子力學的發展奠定了基礎。

1924年,法國物理學家德布羅意大膽預言了實物粒子在一定條件下會表現出波動性;

1927年美、英兩國物理學家得到了電子束在金屬晶體上的衍射圖案。電子顯微鏡與光學顯微鏡相比,衍射現象影響小很多,大大地提高分辨能力,質子顯微鏡的分辨本能更高。

高三物理知識點歸納5

[感應電動勢的大小計算公式]

1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}

2)E=BLV垂(切割磁感線運動){L:有效長度(m)}

3)Em=nBSω(交流發電機的感應電動勢){Em:感應電動勢峯值}

4)E=BL2ω/2(導體一端固定以ω旋轉切割){ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}

4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感係數(H)(線圈L有鐵芯比無鐵芯時要大),

ΔI:變化電流,t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

注:

1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕

2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。

4)其它

熱門標籤